3.235 \(\int \frac {1}{\sqrt {2-3 x^2} \sqrt {1+x^2}} \, dx\)

Optimal. Leaf size=20 \[ \frac {\operatorname {EllipticF}\left (\sin ^{-1}\left (\sqrt {\frac {3}{2}} x\right ),-\frac {2}{3}\right )}{\sqrt {3}} \]

[Out]

1/3*EllipticF(1/2*x*6^(1/2),1/3*I*6^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {419} \[ \frac {F\left (\sin ^{-1}\left (\sqrt {\frac {3}{2}} x\right )|-\frac {2}{3}\right )}{\sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[2 - 3*x^2]*Sqrt[1 + x^2]),x]

[Out]

EllipticF[ArcSin[Sqrt[3/2]*x], -2/3]/Sqrt[3]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {2-3 x^2} \sqrt {1+x^2}} \, dx &=\frac {F\left (\sin ^{-1}\left (\sqrt {\frac {3}{2}} x\right )|-\frac {2}{3}\right )}{\sqrt {3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 20, normalized size = 1.00 \[ \frac {\operatorname {EllipticF}\left (\sin ^{-1}\left (\sqrt {\frac {3}{2}} x\right ),-\frac {2}{3}\right )}{\sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[2 - 3*x^2]*Sqrt[1 + x^2]),x]

[Out]

EllipticF[ArcSin[Sqrt[3/2]*x], -2/3]/Sqrt[3]

________________________________________________________________________________________

fricas [F]  time = 0.64, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {x^{2} + 1} \sqrt {-3 \, x^{2} + 2}}{3 \, x^{4} + x^{2} - 2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/2)/(x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(x^2 + 1)*sqrt(-3*x^2 + 2)/(3*x^4 + x^2 - 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x^{2} + 1} \sqrt {-3 \, x^{2} + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/2)/(x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^2 + 1)*sqrt(-3*x^2 + 2)), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 19, normalized size = 0.95 \[ \frac {\sqrt {3}\, \EllipticF \left (\frac {\sqrt {6}\, x}{2}, \frac {i \sqrt {6}}{3}\right )}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-3*x^2+2)^(1/2)/(x^2+1)^(1/2),x)

[Out]

1/3*EllipticF(1/2*6^(1/2)*x,1/3*I*6^(1/2))*3^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x^{2} + 1} \sqrt {-3 \, x^{2} + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/2)/(x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^2 + 1)*sqrt(-3*x^2 + 2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 \[ \int \frac {1}{\sqrt {x^2+1}\,\sqrt {2-3\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((x^2 + 1)^(1/2)*(2 - 3*x^2)^(1/2)),x)

[Out]

int(1/((x^2 + 1)^(1/2)*(2 - 3*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [A]  time = 4.09, size = 36, normalized size = 1.80 \[ \begin {cases} \frac {\sqrt {3} F\left (\operatorname {asin}{\left (\frac {\sqrt {6} x}{2} \right )}\middle | - \frac {2}{3}\right )}{3} & \text {for}\: x > - \frac {\sqrt {6}}{3} \wedge x < \frac {\sqrt {6}}{3} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x**2+2)**(1/2)/(x**2+1)**(1/2),x)

[Out]

Piecewise((sqrt(3)*elliptic_f(asin(sqrt(6)*x/2), -2/3)/3, (x > -sqrt(6)/3) & (x < sqrt(6)/3)))

________________________________________________________________________________________